
Journal of Power Sources, 26 (1989) 491 - 502 491 

NON-EQUILIBRIUM THERMODYNAMICS OF TRANSPORT AND 
REACTION IN LITHIUM CELLS WITH LIQUID OR POLYMERIC 
ELECTROLYTES: APPLICATION TO IMPEDANCE ANALYSIS 

J. W. LORIMER 

Department of Chemistry, The University of Western Ontario, London, 
Ont. N6A 5B7 (Canada) 

Summary 

The correct flux equations from non-equilibrium thermodynamics are 
used to deduce appropriate differential equations for transport in thin-layer 
lithium cells containing liquid or polymeric electrolytes. The general theory 
is applied to several cases of interest in the interpretation of diffusion 
impedances in cells with non-blocking electrodes. The main results are: (a) 
the occurrence of correction terms in the usual equation for diffusion 
impedance for cells containing a completely- or partially-ionized electrolyte; 
(b) the occurrence of at least two overlapping impedance loops on Nyquist 
plots for cells containing an electrolyte with an ion-pair equilibrium that 
relaxes slowly compared with the rate of diffusion. One loop is the usual 
finite Warburg diffusion impedance, while the other arises from perturbation 
of chemical equilibrium and has the character of a somewhat depressed and 
contracted finite Warburg impedance. 

Introduction 

Equations describing electrochemical processes in thin-layer cells are of 
fundamental interest in providing the basis for the experimental determina- 
tion of charge-transfer and transport parameters in a wide variety of elec- 
trolytes and insertion-type electrodes, and are also of practical interest in the 
design and prediction of operating conditions in thin-layer galvanic cells. 

A number of publications have appeared, of which refs. 1 and 2 are 
examples, in which transport parameters for liquid and solid electrolytes 
have been deduced from potentiostatic or galvanostatic transients, or from 
analysis of impedance spectra. In general, these parameters are suspect 
because, at some point either an incorrect model has been assumed for the 
transport processes, or the inadequate Nernst-Planck equations have been 
used. The failure of the Nernst-Planck equations has been well documented 
in aqueous solutions and in ionic membranes [ 31; they are correct only in 
the infinite dilution limit and for an uncharged phase. The former of these 
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conditions is never met, and the latter can attain considerable importance 
in a typical lithium cell using a thin-layer electrolyte and insertion 
electrodes. 

Fortunately, the alternative to the Nernst-Planck equations is well 
known: correct flux equations based on non-equilibrium thermodynamics. 
This approach has been used by Dudley and Steele for solid electrolytes 
[4], but the appropriate differential equations have not been discussed 
adequately. In this paper, the basic flux equations from non-equilibrium 
thermodynamics [5,6] are summarized and applied to three cases, all 
involving single-phase, two-component electrolytes: (i), single true elec- 
trolyte; (ii), (iii), single true electrolyte with an ion pair equilibrium which is 
established either rapidly or slowly relative to the rate of diffusion. The 
differential equations for transport are deduced for each case, and applied 
to calculation of the impedance spectra. While the differential equations are 
equally applicable to other electrochemical techniques, limitations of space 
permit only brief discussion of the results. A fuller discussion, with more 
applications, will be published elsewhere. 

The theory excludes, for the present, processes connected with 
transport in double layer regions, convection, and possible anisotropic 
effects. 

Theory 

Flux equations from non-equilibrium thermodynamics 
For an isothermal system in the absence of viscous forces, and con- 

taining n + 1 species j, with respective charge numbers Zj (which may be 
zero), in a single solvent (species n + l), the flux equations are: 

Jj = -CLjk(Vpk + zk Fv$) + CjU“ j, k = 1, . . . . n (1) 
k 

where Jj, cj, /.Lj are the flux, amount concentration, and chemical potential 
of species j, F is the Faraday constant, C#J is the electric potential, and Ljk a 
phenomenological coefficient describing the linear dependence of fluxes on 
thermodynamic affinities (or thermodynamic forces). The linear dependence 
of both fluxes and affinities requires that no terms involving one component 
(here taken as the solvent) appear [‘7]. It is assumed that some particular 
reference velocity, u’, is sufficiently close to zero relative to the electrodes 
of the cell that the product cju” is negligible for all concentrations. The 
phenomenological coefficients depend on the choice of reference velocity, 
but this choice has no effect on the form of the equations. The choice 
va==u,+l, the velocity of the solvent, has been suggested [ 41; a more 
appropriate choice may be the mean volume velocity, as in many experi- 
mental methods for measuring diffusion [6]. The Onsager relations hold: 
Ljk = L&j, j, k = 1, . . . . n, and give n(n + 1)/2 independent coefficients. 
The amount-of-substance transport number of species j, or, more concisely, 
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the amount transport number (previously and inconsistently called the 
mass transport number) is defined as the fraction of the amount-of-substance 
of j carried by that species per unit flow of electric charge when no 
concentration gradients are present: 

tj=F~Ii=F2~ZkLjk/K ~//.~k=O,k=l,...,n 
k 

(2) 

where i is the magnitude of the current density and K the conductivity. The 
amount transport numbers obey the relation Xz, tj = 1. Note that the amount 
transport number of a neutral species is not necessarily zero, but its charge 
transport number, Tj = Zitj, is zero. The equation for the current density 
may be used to eliminate the gradient of electrical potential, from which 
transformed flux equations may be found: 

Jj = tji/F - CMjk vpk 
k 

(3) 

where 

Mjk = Ljk - tjtkK/F’ 

and 

j, k = 1, . . . . n (4) 

c k ZjMjk = 0, Mjk = Mkj j, k = 1, . . . . n (5) 

For n species, relations (5) show that there are n(n - 1)/2 independent 
VdUeS Of Mjk. The coefficients Mjk appear to have been introduced first by 
Harned and Owen [8] for aqueous solutions and were subsequently 
generalized by Lorimer et al. [9] for membrane transport. Each Mjk coef- 
ficient consists of a diffusive part and a migration part; the latter arises 
from writing the flux equations in terms of the current density rather than 
the gradient of electric potential. Multicomponent diffusion coefficients can 
be defined in the usual way: 

Djk = zMjia/.li/aCk i,j,k=l,..., n (6) 
i 

Two-component, completely-ionized electrolyte 
This example is treated in some detail to illustrate the general 

procedures for calculation. For the molar fluxes J, , J2 in a system containing 
a single electrolyte which ionizes completely: 

~142 - cvlzl + Av2’z 

V/J&1 - VPZI~, = WPlV,Z, = - e7PlV2~2 (7) 

.where v = v1 + v2, subscripts 1, 2 refer to cations and anions, respectively, 
and p is the chemical potential of the salt. The flux eqns. (3) with (5) and 
(6) reduce to 
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Jj = Tii/ziF - DVc j=I,2 (8) 

Here, the gradient of chemical potential in terms of the thermodynamic 
activity factor G and the gradient of the amount concentration c has been 
used : 

vp = (&.~./ik)o~ = RT(l + a In y+la In C)VC/C = (RTG/c)Vc (9) 

where R is the universal gas constant, T the thermodynamic temperature and 
y+ the mean ionic activity coefficient on the amount concentration scale. 
The salt flux is defined as J, = J,/vI = J2/v2 at i = 0, and the diffusion coef- 
ficient D is 

D = vM,,RTGlv,v,c (10) 

Differential equations for transport 
The equation of continuity for each species is 

%,/at = -o.Ji + rjJ (11) 

where J is the rate of a single chemical reaction involving species j, and rj is 
the stoichiometric coefficient for species j in that reaction. Because Cj = VjC, 
substitution of eqn. (8) in eqn. (11) gives 

vi&z/at =---V*(Tji/zjF) + v~V*(DVC) + rjJ (12) 

For conservation of charge in the system, with p the charge density 
[51, 

apjat = -v-i (13) 

For an electrically neutral system, the charge in a hydrodynamic volume 
element is zero, so that the right-hand side of eqn. (13) is zero. If, as well, 
there is no chemical reaction, and the transport numbers are independent 
of concentration over the range of concentrations encountered in a par- 
ticular experiment, or vary more slowly with concentration than the 
diffusion coefficient, then eqn. (12) reduces to Fick’s second law of 
diffusion. 

We now consider a cell with a 1 - 1 electrolyte containing lithium ions 
between two planar lithium electrodes located at x = 0, 2L. As electrolysis 
proceeds under an applied potential, the anode dissolves, causing an increase 
of concentration next to the anode. Similarly, metal is deposited on the 
cathode, causing a decrease in concentration next to the cathode. A steep 
diffusion gradient is thus set up, and a diffusion potential opposes the 
applied potential. 

The boundary conditions at the electrodes require that there is no 
flux of anions, or equivalently, that the cation flux from the electrode is 
balanced by migration and diffusion of cations. Thus, 

T,ilF = -oacjax x = 0,2L (14) 
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An electronic current flow into the anode (here the left-hand electrode, at 
x = 0) from the external circuit is taken as positive; similarly, an electronic 
current flow out of the cathode into the external circuit is positive. The 
concentration gradient in the electrolyte is negative; thus the diffusive flux 
from anode to cathode is positive. 

The total potential, E, applied to the cell is the sum of the reaction 
overpotential r), the diffusion potential E d, and the ohmic overpotential 
Eg. The anodic overpotential is given by the Butler-Volmer equation 

i = ioCexp[(l - @gF/RT] - (al/al*j exp(-&F/ET)} (15) 

where i. is the exchange current density, ai, al* the activities of the electro- 
active species when current flows and when no current flows (cf. ref. lo), 
and fl is the transfer coefficient for a one-electron process. It is necessary to 
carry out calculations for only one half of the symmetric cell, i.e., from 
x = 0 to x = L; thus the specific cathodic overpotential need not be consid- 
ered. The ohmic overpotential and the diffusion potential are the respective 
terms in 

ER+Ed=i j &/K(X) + (RT/F)/ (T, d In a1 - T, d In a?) (16) 
x-o x=0 

ER is a function of both E (through i) and c, while Ed and a1 are functions 
of c only. Calculation of the impedance, 2, of the cell at the equilibrium 
potential is carried out by the Laplace transform method [ 111: 

2 = 1 - x( ai/aci)fi(O, jti) 
i 

(17) 

where fi(O, s) = &/T, the bars indicate Laplace transforms, and s is the 
Laplace transform parameter. The derivatives are calculated at x = 0. Calcu- 
lation of the derivatives ai/&, and ai/aE from eqns. (15) and (16) and use of 
(17) gives the total impedance as the sum of the usual charge transfer 
impedance R TIFio, the ohmic impedance R, and the diffusion impedance. 
(Each impedance quoted is actually an impedance-area product, as given by 
eqn. (17).) No capacitative effects from double layers or arising from the 
geometry of the cell have been included; therefore the charge transfer and 
ohmic impedances have no imaginary components. The diffusion impedance 
is found to be 

Zd = (2GRT/Fc,)T,f(O, s) W) 

The function f(x, s) is found from the solution in the Laplace plane of 
eqn. (12), which becomes Fick’s second law: 

aclat = Da2clax2 (19) 

with boundary conditions eqn. (14) and the initial condition c(x, 0) = co. 
Substitution of x = 0 and s = jo in the solution of eqn. (19), where o is 
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the circular frequency and j is the square root of -1, gives, finally, the well- 
known equation: 

f(0, s) = {Z’z/F(sD)1’2} tanh{(s/D)“*L} (20) 

The diffusion impedance is then found from eqns. (18) and (20) to be 

2, = (2GRTLT221c0DF2) tanh y /y (21) 

where y* = jwL2/D. Equation (21) can be written in a more familiar form by 
noting that the diffusion coefficient is given by the rigorous equation 

D = 2RTG{L,,/c, + X,X2fF2(h, + A,)} (22) 

where Xi is the ionic conductivity of ion i at the bulk concentration of the 
electrolyte, and that the total cell resistance* area (also at the bulk concentra- 
tion) is 2R, = 2L/c,(h, + X2). The result is a corrected Macdonald equation 

r12,131 

& = Rc02/hlWanh Y/Y)/(~ + 9) 

where 

(23) 

Q = (F*~512h_J(l/~, + l/h,) (24) 

Thus the Macdonald equation contains a correction term which is significant 
at finite concentrations of electrolyte, and which makes interpretation of 
the impedance at finite concentrations in terms of ratios of ionic conduc- 
tivities impossible unless the fuU equation is used. Consistent data from 
which the correction term can be evaluated are unavailable for most elec- 
trolytes. For concentrated aqueous chloride solutions at 25 “C, data [14] 
show that Q can be as large as 0.5; for 3 mol dmP3 LiCl Q = 0.4626. and for 
HCl, LiCl, NaCl, and KCl, the factor (hi/X,)/(1 + Q) decreases by 41, 0.5, 
22 and 33%, respectively, between infinite dilution and 3 mol dme3. Thus 
the factor 1 + Q cannot be ignored, and the Macdonald form, eqn. (23) of 
the equation for the impedance, is not the most useful. On the other hand, if 
D can be found from the frequency at the maximum of the diffusion 
impedance loop (see below), then the width of the loop gives the product 
GT22. Lack of knowledge of the thermodynamic factor G can result in 
discrepancies between transport numbers found from impedance measure- 
ments and from other techniques. 

Figure 1 (dot-dash curves) shows the shape of that part of the im- 
pedance curve which arises from diffusion (i.e., from the diffusion potential) 
and which is characterized by the ratios [15] H/W = 0.4172, M/W = 0.5816, 
w, = 2.5407D/L2 where H, W are the height and width, M is the width 
to the maximum, and w, is the frequency at the maximum. The factor 
BR,(X,/)\,)/(l + 9) = 100 52 in all plots. 

Two-component electrolyte with ion pair formation 
We next consider ion pair formation C+ + A- * CA, with rate constants 

h, and kk, for the forward and backward reactions. If the system is initially 
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(a) Re Z/ohm (b) Re Z/ohm 

Fig. 1. Calculated impedance plots for diffusion plus chemical relaxation. Diffusion coef- 
ficient D = 2 X lo* m2 s-l, cell thickness L = 2 x 10” m. - total impedance; - . -, 
pure diffusion; - - -, relaxation. (a) relaxation rate cons&t k’ = 10 s-l; (b) 12’ = 
100 s-l. Frequencies in Hz; pure diffusion arcs normalized to 100 52. 

at equilibrium, application of a perturbing electric field produces a change 
in concentration, causing, in general, a perturbation in the chemical equilib- 
rium which relaxes at its own intrinsic rate. For a system not at chemical 
equilibrium, but with local conservation of charge, there are two inde- 
pendently-diffusing species cation (=l) and ion pair (=3), and eqns. (3), 
(5) and (6) give the transport equations for this ternary diffusing system 
as (cf. ref. 16): 

ac,/& = D,1Q’2c1 t: D1sV2cs - k,c12 + k-lcg 

%,/at = D,,V2c1 + D3$J2c3 + k,ci2 - &cg 
(25) 

where the Diks are the ternary diffusion coefficients and Ci is the total 
perturbed concentration in the diffusion field. Linearization of the chemical 
rate equations, for reactions close to equilibrium, gives: 

&z,/& = D11~‘2c1 +: D,,Q2c3 - 2k,c;& +’ k_,6c3 

&,/at = D,,V2c1 + D,,v2c3 + 2k&8cl - k-,&z3 
(261 

where 6Ci = Ci - Cie is a small perturbation from the equilibrium concentra- 
tion (in the diffusion field) cl+ The equilibrium concentrations in the dif- 
fusion field obey the pair of differential equations 

ac,,/at = D1,82c,, ‘+ D13G2c3e 

&,/at = Ds1V‘2~1e‘+ D33V2~se 
(27) 

Subtraction of eqn. (27) from eqn. (26) gives 

Xc,/& = D,,~‘26c1 + D,,626c3 - 2k,c&l + k-,6c3 

%c3/6t = Ds1V‘26c1 + D,,v26c3 + 2k,c1,6cI - k-,&z3 
(28) 

We consider two cases: (a) the rate of equilibration through chemical 
reaction is large compared with the rate of diffusion; (b) the rate of 
equilibration is comparable with the rate of diffusion. 

Case (a): rate of chemical reaction large relative to rate of diffusion 
In this case, 6c1 = -&s, and the rate constants can then be combined 

into a single relaxation rate constant 
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k’ = 2k,ac + km, (29) 

where c = clejo is the total concentration and a! is the equilibrium degree of 
dissociation. With the relaxation rate constant large compared with the rate 
of diffusion (specifically, from eqn. (28), if (D,, --D&L2 +Z k’), &cl decays 
to zero in a few lifetimes of the chemical reaction. The single equation for 
the flux of salt is identical with eqn. (19), because diffusion now occurs in 
a two-component system: there are two constraints, electrical neutrality and 
chemical equilibrium, among the three species, cation, anion, and ion pair. 
In relation to eqn. (27), it will be shown elsewhere that, to a good approxi- 
mation, 

D = ND,, + G,) + (1 -o)(D,, + D,,) 

The solution of the diffusion equation in the Laplace plane is carried out 
with initial condition c = co and boundary condition 

(T2 - t&/F = -D(&/at) at x = 0 (36) 

where t3 is the amount transport number of ion pairs. Condition (30) states 
that there is no flux of salt across the electrode; individual fluxes of anions 
and ion pairs may be finite at the electrode, but their sum is zero. The 
solution of the diffusion equation in the Laplace plane is then analogous to 
eqn. (20): 

f(0, s) = ((T* - ts)2/F(.sD)1’2} tanh{ (s/D)1’2L} (31) 

In the Butler-Volmer equation, (15), the activity is now the activity of 
the salt; the ion pairs dissociate at an infinitely fast rate, by supposition, so 
that they also are involved in charge transfer. The ohmic overpotential 
term in eqn. (16) remains the same; an extra term ts dln a3 arises in the 
integrand of the diffusion potential term in eqn. (16) from transport of the 
ion pairs. Equations (15) - (17) and (31) give the diffusion impedance as 

2, = {BGRTL(T, - t3)2/coDF2} tanh y/y (32) 

Substitution of 

R, = Lloco0, + A,), 

T, = h,/O, + A,) 

and 

D = 2GRT(M,, + 2M,, + M33) = 2GRTaXlh2/{(X1 + A,)(Q, + Q2)}, 

where now 

Q1 = 1 - 2t,(l - t3/2T1)/T2 

and 

Q2 = F2(b + ~,){(L,, + =I, + L33)/cO}/ah,h2 

gives 

(33) 

(34) 
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Zd = &Odh)(l - h/Td2(ta~ rlrMQ1 + Q2) (35) 

Clearly, the form (32) is more useful then the form (35). 

Case (b): rate of chemical reaction comparable with rate of diffusion 
Equations (28), with the assumption that the equilibrium concentra- 

tion cle’ is roughly constant in the chemical kinetic terms, may be solved 
rigorously by diagonalizing the matrix of diffusion coefficients via a linear 
transformation of the 6Cj, and combining the resulting pair of equations, 
which are still coupled, into a single, fourth-order homogeneous differential 
equation with constant coefficients. The solution is algebraically very 
complicated, and will be discussed in detail elsewhere. For the present 
purposes, the general nature of the effects arising from perturbation of the 
equilibrium concentrations can be deduced under two approximations: 
(a) II,, = Ds1 = 0; (b) 6cI = -a+, which holds strictly in the absence of the 
diffusion field. These two assumptions are consistent only if II,, 4 Ds3 = D, 
a common diffusion coefficient. The single differential equation for 6cI is 
then 

a&,/& = DV26c1 - k’6cl (36) 

with initial condition 6cI = 0 at t = 0. The boundary conditions express no 
separate fluxes of anion or ion pair across the electrode; in this restricted 
case, the condition is 

T,i/F = DaGcIlax at x = 0,2L (37) 

The perturbation in concentration simply adds an extra contribution to 
the concentration gradient at x = 0 and an extra contribution 6i to the 
current density, provided that only the cation (and not the ion pair) is elec- 
troactive. The solution of eqn. (36) in the Laplace plane is then 

6c,(O, s) = (Z’,z/F) tanh r/r (33) 

where now, with s = jw, 

y2 = o’w + k’)L2/D (39) 

The chemical reaction term leads to an extra impedance, essentially as 
a contribution to the diffusion potential: the concentrations at the anode 
increase, and, for a constant applied potential, less current flows. 

The derivatives at zero current are as before, so that the final result for 
the diffusion impedance is: 

zd, = {2GRTLT2(T2 - ts)/c,DF2)(tanh r/y) (40) 

The total diffusion impedance is the sum of eqns. (35) and (40). Using the 
identity 

(2(k’ + jo)}1'2 = {k' + (kf2 + w2)1/2}1/2 +j{-_k' + (kf2 + (,,J~)~'~)I'~ (41) 

in eqn. (40) shows that the imaginary and real parts of the impedance both 
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approach zero if h’ > w, so that only the pure diffusion contribution Zd 
remains. The impedance starts off at high frequencies with unit slope on a 
-1m uersus Re plot, just like a pure diffusion impedance. However, at lower 
frequencies, the effect of the finite chemical relaxation is to lower the 
imaginary part of the impedance to values smaller than those for pure dif- 
fusion. The arc for the total impedance is slightly flattened, and the real 
impedance at the maximum is slightly greater, compared with pure diffusion. 
These are diagnostic criteria for the possible occurrence of at least one slow 
chemical process. The combined diffusion and relaxation arcs may be more 
or less distinct, as in Fig. l(b), or combined into one arc (Fig. l(a)) which, 
superficially, looks like a single, pure diffusion arc. 

Conclusions 

Non-equilibrium thermodynamics is no more difficult in its application 
to problems of impedance in electrochemical cells with electrolytes at finite 
concentration or without supporting electrolyte than the inadequate and, in 
most cases, incorrect Nernst-Planck equations. The non-equilibrium thermo- 
dynamic equations of motion can be written in a form which leads to a 
systematic and rigorous description of migration, diffusion, and perturba- 
tions of chemical reactions close to equilibrium. 

Application of these equations in this paper has yielded two significant 
conclusions: that the conventional Macdonald equation requires correction 
for finite concentrations, but that neglect of the correction gives an approxi- 
mately correct ratio of ionic conductivities at infinite dilution; and that a 
simple chemical relaxation process (here represented explicitly as ion pair 
formation) contributes an additive term to the diffusion impedance. This 
chemical process can contribute significantly to the impedance behaviour 
at frequencies higher than those at which pure diffusion is dominant, and 
therefore can give rise to a marked distortion of the pure diffusion arc on 
a Nyquist diagram. For a range of ratios of rate constant to diffusion 
constant, this distorted arc has the characteristics of a depressed finite 
Warburg impedance. 
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List of symbols 

aj Activity of species i (mol mV3) 
ai 

* Activity of species j with i = 0 (mol me3) 
c Amount concentration (mol mw3) 
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cj 
Cje 

CO 

D 

DU 
E 

ER, ED 

f(O, s) 
F 
G 
H 
i 

i0 

Im 
j 
J 

4 
k’ 

k, 
k-l 
L 
L. 
id” 

Mik 
Q 
‘;’ 
R 

RC 
Re 
S 

t 

h 

Ti 
T 
W 
X 

Y+ 
zi 
ZD 

a 

P 

ic 

AC 

Amount concentration of species j (mol rne3) 
Amount concentration of species j at chemical equilibrium in dif- 
fusion field (mol me3) 
Bulk concentration (mol mw3) 
Binary diffusion coefficient (m2 s-l) 
Ternary diffusion coefficient (m2 s-l) 
Applied potential (V) 
Ohmic, diffusive contributions to cell potential (V) 
= AE,/i 
Faraday constant (C mol-‘) 
=l+alny+/alnc 
Height of diffusion impedance loop on Nyquist plot (a m2) 
Current density (A mw2) 
Exchange current density (A me2) 
Imaginary part of impedance (a m2) 
= (_1)‘/2 

Rate of chemical reaction (mol me3 s-l) 
Flux of species j (mol me2 s-l) 
Relaxation rate constant (s-i) 
Rate constant for forward second-order reaction (m3 mall’ s-l) 
Rate constant for backward first-order reaction (6) 
Half-thickness of cell (m) 
Phenomenological coefficient (mol’ kg-’ my3 s) 
Width to maximum of diffusion loop on Nyquist plot (G! m2) 
Phenomenological coefficient (mo12 kg-’ me3 s) 
Correction term, eqns. (24), (31) 
Stoichiometric coefficient for species j in a chemical reaction 
Universal gas constant (J K-l mol-‘) 
(cell resistance- area)/2 (a m2) 
Real part of impedance (a m2) 
Laplace transform variable (s-l) 
Time (s) 
Amount transport number of species j 
Charge transport number of species j 
Thermodynamic temperature 
Width of diffusion loop on Nyquist plot (a) 
Coordinate perpendicular to electrode surface (m) 
Activity coefficient on amount concentration scale 
Charge number of species j 
Diffusion impedance (a m2) 
Degree of ionization 
Transfer coefficient 
= {(jw + k’)L2/D]1’2 
Difference between reaction-perturbed and unperturbed concentra- 
tion in diffusion field (mol rne3) 
Concentration at x less bulk concentration (mol rne3) 
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rl Charge-transfer overpotential (V) 
K Conductivity (S m-l) 
Ai Ionic conductivity of ion j (S me2 mol-‘) 
vi Stoichiometric coefficient 
V 

& 

= Vl + l.3 

Chemical potential of species j (J mol-‘) 
d Charge density (C me3) 
4 Electrical potential (V) 
w Circular frequency (s-i) 
v Gradient operator (m-i) 
8. Divergence operator (m-l) 

Subscripts and superscripts 
1,2, 3 (subscripts) cation, anion, ion pair 
- (superscript) Laplace transform 
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